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Density functional theory of phase coexistence in weakly polydisperse fluids
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The recently proposed universal relations between the moments of the polydispersity distributions of a
phase-separated weakly polydisperse system are analyzed in detail using the numerical results obtained by
solving a simple density functional theory of a polydisperse fluid. It is shown that universal properties are the
exception rather than the rule.

PACS number~s!: 05.70.2a, 64.75.1g, 82.60.Lf
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Many, natural or manmade, systems are mixtures of s
lar instead of identical objects. For example, in a colloid
dispersion@1# the size and surface charge of the colloid
particles are usually distributed in an almost continuous fa
ion around some mean value. When this distribution is v
narrow the system can often be assimilated@2# to a one-
component system of identical objects. Such a system is
ally called monodisperse whereas otherwise it is term
polydisperse. Since polydispersity is a direct consequenc
the physicochemical production process it is an intrin
property of many industrial systems. Therefore many auth
@3# have included polydispersity into the description of
given phase of such systems. More recently, a renewed
terest can be witnessed for the study of phase transit
occuring in weakly polydisperse systems@4#. The phase be-
havior of polydisperse systems is of course much richer t
that of its monodisperse counterpart. It is also more diffic
to study theoretically, essentially because one has to c
with an infinity of thermodynamic coexistence conditio
@3#. Therefore several authors have proposed approxima
schemes@5# which try to bypass this difficulty. In the presen
study we take the opposite point of view by solving nume
cally the infinitely many thermodynamic coexistence con
tions for a simple model polydisperse system. On this ba
we have studied the radius of convergence of the weak p
dispersity expansion used in Ref.@4# and found that their
‘‘universal law of fractionation’’ and some of their conclu
sions have to be modified in several cases.

The statistical mechanical description of a polydispe
equilibrium system is equivalent to a density function
theory @6# for a system whose number density,r(r ,s), de-
pends besides the position variabler ~assuming spherica
particles! also on at least one polydispersity variables
~which we consider to be dimensionless!. Such a theory is
completely determined once the intrinsic Helmholtz fre
energy per unit volume,f @r#, has been specified as a fun
tional of r(r ,s) ~for notational convenience the dependen
on the temperatureT will not be indicated explicitly!. For
the spatially uniform fluid phases considered here~and also
implicitly in Ref. @4#! we haver(r ,s)→r(s), and the pres-
sure can be written asp@r#5*dsr(s)m(s;@r#)2 f @r#,
where m(s;@r#)5d f @r#/dr(s) is the chemical potentia
of ‘‘species’’ s. When a parent phase of densityr0(s)
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phase separates inton daughter phases of densityr i(s) ( i
51, . . . ,n) the phase coexistence conditions imply th
p@r1#5p@r2#5•••5p@rn#, and m(s;@r1#)5m(s;@r2#)
5•••5m(s;@rn#). For simplicity we consider here only th
case of two daughter phases (n52) and rewrite moreover
r i(s)5r ihi(s)( i 50,1,2) in terms of the average densityr i
and a polydispersity distributionhi(s) such that*dshi(s)
51. Since the ideal gas contribution tof @r# is exactly
known @6# one has m(s;@r#)5kBT ln$L3(s)r(s)%
1mex(s;@r#), wherekB is Boltzmann’s constant,L(s) is the
thermal de Broglie wavelength of speciess, and mex the
excess~ex! contribution tom. This allows us to rewrite the
equality of the chemical potentials of the two daugh
phases, ash1(s)5h2(s)A(s), whereA(s) is a shorthand
notation for

A~s!5
r2

r1
expb$mex~s;@r2# !2mex~s;@r1# !% ~1!

with b51/kBT. The polydispersity distributions are furthe
constrained by the relationx1h1(s)1x2h2(s)5h0(s),
which expresses particle number conservation. The num
concentration of phase 1,x1512x2, is given by the lever
rule: x15@r1 /(r12r2)#•@(r02r2)/r0#. Combining these
two relations one finds

h2~s!2h1~s!5h0~s!•H~s!, ~2!

whereH(s)[@12A(s)#/@x21x1A(s)#. Equation~2! is the
starting point to relate the difference between the mome
of the daughter phases,Dk5*ds sk@h2(s)2h1(s)#, to the
moments,jk5*ds skh0(s) (k50,1,2, . . . ), of theparent
phase distributionh0(s). Indeed, whens is chosen such tha
h0(s) tends to the Dirac delta functiond(s) in the mono-
disperse limit,Dk can be obtained from Eq.~2! by expanding
H(s) arounds50, H(s)5( l 50

` als
l , yielding for a weakly

polydisperse system,Dk5( l 50
` alj l 1k . The normalization of

the hi(s) ( i 50,1,2) implies D050, j051 or a05
2( l 51

` alj l , and eliminatinga0 from Dk yields the general
moment relation

Dk5a1jk111(
l 52

`

al~jk1 l2j ljk!, ~3!
3249 ©2000 The American Physical Society
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where we took, moreover, into account thats can always be
chosen such thatj150. When only the first term in the right
hand side of Eq.~3! is retained we recover the universal la
Dk /D l5jk11 /j l 11, put forward in Ref.@4#. The question
left unanswered by the study of Ref.@4# concerns the radius
of convergence of the weak polydispersity expansion~3!. In
order to study this problem in more detail we now conside
simple model system for which we can determine
hi(s)( i 51,2) numerically and compare the results with E
~3!. The free energy density functional chosen here co
sponds to a simple van der Waals~vdW! model @7# for the
liquid-vapor transition in polydisperse systems of spheri
particles of variable size:

f @r#5kBTE dsr~s!H lnS L3~s!r~s!

E@r# D21J
1 1

2 E dsE ds8V~s,s8!r~s!r~s8!, ~4!

where E@r#512*dsv(s)r(s) describes the averag
excluded volume correction for particles of radiusRs and
volume v(s)5(4p/3)Rs

3 , while V(s,s8)5*drV(r ;s,s8)
is the integrated attraction between two particles of species
ands8, for which we took the usual vdW formV(r ;s,s8)
52e0(Rs1Rs8)

6/r 6 for r>Rs1Rs8 and zero otherwise
e0 being the amplitude of the attraction at the contact
the two particles. The size polydispersity can be descri
in terms of the dimensionless variable,s5Rs /R21, with

FIG. 1. The polydispersity distributionshn(s) of the parent
phase (n50: full curve! ~a Schulz distribution with the width pa
rametera550), the low-density (n51: dotted curve! and the high-
density (n52: circles! daughter phases, as obtained by numerica
solving the coexistence conditions of the van der Waals mode
Eq. ~4! for t51, h050.5. The corresponding dimensionless den
ties of the coexisting daughter phases areh150.106,h250.521
whereas for the monodisperse system one hash150.103,h2

50.608. Also shown areh1(s)2h0(s) ~dashed curve! and
@h2(s)2h0(s)#•50 ~triangles!.
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R the mean value ofRs in the parent phase, henc
j15*ds sh0(s)50. The thermodynamics is given in term
of h0(s), the dimensionless temperaturet5kB T/e0 and the
dimensionless densityh5v0r, with v05(4p/3)R0

3 and R0

the value ofRs in the monodisperse limit. The coexistenc
conditions are integral equations which can be solv
numerically using, for instance, an iterative algorithm@8#
for any t, h05v0r0 andh0(s). For h0(s) we took a Schulz
distribution @3# with zero mean. The normalized distribu
tion is given, for 21<s,`, by h0(s)5aa(1
1s)a21e2a(11s)/G(a), with G(a) the gamma function and
1/a a width parameter which measures the distance to
monodisperse limit,h0(s)→d(s) when a→`. We then
have: j051, j150, j251/a, j352/a2, j453/a216/a3,
j5520/a3124/a4, etc. For a weakly polydisperse syste
we retain only the dominant terms of Eq.~3! in a 1/a ex-
pansion. From Eq.~3! we obtain then: D15a1(`)j2

1O(1/a2), D25a1(`)j31a2(`)(j42j2
2)1O(1/a3)

5$a1(`)1a2(`)%j31O(1/a3), D35a1(`)j41O(1/a3),
etc, whereal(`) are the values ofal for a→`. Using the
vdW expression~4! to evaluate Eq.~1! one finds, for ex-
ample, for t51.0 andh050.5, a1(`)51.75 anda2(`)5
22.68. Using the corresponding numerical solutions fou
for h1(s) andh2(s) ~see Fig. 1! it can be seen from Fig. 2
that D1 /j2'1.75, D2 /j3'20.93, and D3 /j4'1.75 are
obeyed to within ten percent fora larger than, respectively
40, 80, and 150. We can conclude thus that the weak p
dispersity expansion~3! is valid ~to dominant order! for
Schulz distributionsh0(s) with a dispersion@(j22j1

2)1/2#
smaller than, say, 0.1 (a'100). These values do, of cours
depend on the thermodynamic state but the case consid

y
of
-

FIG. 2. The ratioDk /jk11 (k51,2,3) versus 1/a as obtained
from the numerical solution of the van der Waals model of Eq.~4!
for t51, h050.5 and a Schulz distribution forh0(s). The symbols
are as follows: circles (k51), squares (k52), and triangles (k
53). The dotted lines indicate their asymptotic (a→`) values.
The arrows indicate for each case the radius of convergence o
weak polydispersity expansion of Eq.~3!.
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here (t51,h050.5) is representative of othert,h0 values.
Note also that we have verified numerically that the radius
convergence of Eq.~3! with respect to 1/a is fairly sensitive
to the total amount of polydispersity present. Allowing, f
instance, the amplitudee0 of the pair potentialV(r ;s,s8) to
depend ons ands8 does reduce the radius of convergen
of Eq. ~3! considerably. From the above it follows th
D3 /D1 follows the universal law,D3 /D15j4 /j2, put for-
ward in Ref. @4# whereasD2 /D1 follows the nonuniversa
n-

-

, J
f
law, D2 /D15$11a2(`)/a1(`)%j3 /j2. We have verified
that similar results can be obtained for differenth0(s) dis-
tributions. Taking, for instance, a Gaussian forh0(s), simi-
lar results are found, althoughj350 for this case. This in-
validates the conclusion of Ref.@4# that a particular
importance should be attached to the skewness ofh0(s). In
conclusion, the general moment relation~3! can yield useful
information about the phase behavior of weakly polydispe
systems but this information is in general not universal.
ev.
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