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Density functional theory of phase coexistence in weakly polydisperse fluids
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The recently proposed universal relations between the moments of the polydispersity distributions of a
phase-separated weakly polydisperse system are analyzed in detail using the numerical results obtained by
solving a simple density functional theory of a polydisperse fluid. It is shown that universal properties are the
exception rather than the rule.

PACS numbds): 05.70—a, 64.75:+g, 82.60.Lf

Many, natural or manmade, systems are mixtures of simiphase separates intodaughter phases of densipy(o) (i

lar instead of identical objects. For example, in a colloidal=1, ... ) the phase coexistence conditions imply that
dispersion[1] the size and surface charge of the colloidalp[pi]=plp2]="---=plpnl. and w(o;[p1])=wu(o;lp2])
particles are usually distributed in an almost continuous fash=- - - = u(o;[ p,]). For simplicity we consider here only the

ion around some mean value. When this distribution is verycase of two daughter phases=(2) and rewrite moreover
narrow the system can often be assimilafédi to a one-  pi(o)=pihi(o)(i=0,1,2) in terms of the average density
component system of identical objects. Such a system is us@nd a polydispersity distributioh;(co) such thatfdoh;(o)

ally called monodisperse whereas otherwise it is termed=1. Since the ideal gas contribution tp] is exactly
polydisperse. Since polydispersity is a direct consequence &nown [6] one has u(o;[p])=kgT IN{A%(0)p(0)}
the physicochemical production process it is an intrinsict#eda:[p]), Wherekg is Boltzmann's constant) (o) is the
property of many industrial systems. Therefore many author1€rmal de Broglie wavelength of species and e, the

[3] have included polydispersity into the description of aexces's(ex) contrlbutloq tou. This laIIows us to rewrite the
given phase of such systems. More recently, a renewed irgduality of the chemical potentials of the two daughter
terest can be witnessed for the study of phase transitiord1@ses: asii(a) =h;()A(0), whereA(o) is a shorthand

occuring in weakly polydisperse systeifd. The phase be- notation for

havior of polydisperse systems is of course much richer than o

that of its monodisperse counterpart. It is also more difficult A(o)= _Zexpﬁ{,uex(g;[pz])_Mex(g;[pl])} (1)
to study theoretically, essentially because one has to cope P1

with an infinity of thermodynamic coexistence conditions . B . e
[3]. Therefore several authors have proposed approximatioWIth {8 N 1 EBTB Thti pon<|1|iperS|rt]y d|sE:|bu;|ons frf further
scheme$5] which try to bypass this difficulty. In the present cONnstrained by ‘the relatiorx, 1(0) +X2h5(0) =ho(a),
study we take the opposite point of view by solving numeri_Whlch expresses particle number cqnsgrvatlon. The number
cally the infinitely many thermodynamic coexistence condi-cﬂn?entiat'onl of phase ;= 1_X7’ IS ggen k?y_the Iﬁver
tions for a simple model polydisperse system. On this basis“'€" Xll__[pl (Pl_f_P(Zj)]'[(PO_PZ) po]. Combining these

we have studied the radius of convergence of the weak poly¥V° relations one finds

dispersity expansion used in Ré#] and found that their _ _ _
“universal law of fractionation” and some of their conclu- ho(@) ~hi(@)=ho(o)-H(), @
sions have to be modified in several cases. whereH (o) =[1—A(0)]/[Xo+ X,A(c)]. Equation(2) is the

The statistical mechanical description of a polydispersgaiting noint to relate the difference between the moments
equilibrium system is equivalent to a density functlonalof the daughter phasea, = [do o¥[h,(o)—hy(a)], to the

theory[6] fpr a system yv_hose nL_meer dens?n(,r,o), d_e— moments, &= [do o*hy(o) (k=0,1,2 ...), of theparent
pends besides the position variable(assuming spherical - 56 gistributiom(). Indeed, whenr is chosen such that
part_lcle3 also on at least one polydlspersny varlabh_a ho(o) tends to the Dirac delta functiofi(o) in the mono-
(which we consider to be dimensionlgsSuch a theory is disperse limitA can be obtained from E¢2) by expanding

completely determined once the intrinsic Helmholtz free- _ N U vialdi
energy per unit volumef[ p], has been specified as a func- H(o) aroundo=0, H() =23, yielding for a weakly

tional of p(r, ) (for notational convenience the dependenceP®YdiSPErse iysterrzt\k—.2|:'oa|§|+k_. The nclrmallzanon_of
on the temperaturd will not be indicated explicitly. For "¢ _hi(@) (i=0.1,2) implies Ao=0, &=1 or a,=
the spatially uniform fluid phases considered h@med also ~ — ~1-1&1¢1, and eliminatinga, from Ay yields the general
implicitly in Ref. [4]) we havep(r,a)— p(o), and the pres- Mmoment relation

sure can be written ap[p]=/ dop(a)u(a;[p])—f[p],

where u(o;[p])= 8f[pl/6p(a) is the chemical potential Ak:a1§k+l+z a(Esi—EE, 3)
of “species” o. When a parent phase of densipy(o) =2
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FIG. 1. The polydispersity distributions,(c) of the parent FIG. 2. The ratioAy /&y, (k=1,2,3) versus ¥ as obtained

phase (=0: full curve) (a Schulz distribution with the width pa-
rametera=50), the low-densityrf=1: dotted curvgand the high-

density (= 2: circleg daughter phases, as obtained by numerically’
solving the coexistence conditions of the van der Waals model o
Eq. (4) for t=1, 5,=0.5. The corresponding dimensionless densi-

ties of the coexisting daughter phases arg=0.1067,=0.521
whereas for the monodisperse system one hgs-0.1037,
=0.608. Also shown areh;(o)—hgy(o) (dashed curve and
[hy(o)—hg(a)]- 50 (triangles.

where we took, moreover, into account tlwatan always be
chosen such that, = 0. When only the first term in the right-

from the numerical solution of the van der Waals model of @g.
fort=1, 7,=0.5 and a Schulz distribution fdry(o). The symbols

are as follows: circlesk=1), squares K=2), and triangles K
F3). The dotted lines indicate their asymptotie—¢) values.

The arrows indicate for each case the radius of convergence of the
weak polydispersity expansion of E().

R the mean value ofR, in the parent phase, hence
&,=[do ohy(o)=0. The thermodynamics is given in terms
of hg(o), the dimensionless temperaturekg T/€g and the
dimensionless densityy=uvqp, with v0=(477/3)R8 and Ry

hand side of Eq(3) is retained we recover the universal law the value ofR, in the monodisperse limit. The coexistence

AyIA =& 11& 11, put forward in Ref.[4]. The question
left unanswered by the study of R¢#] concerns the radius
of convergence of the weak polydispersity expans@nIn

conditions are integral equations which can be solved
numerically using, for instance, an iterative algoritfi8i
for anyt, ny=vopo andhy(o). Forhgy(o) we took a Schulz

order to study this problem in more detail we now consider &istribution [3] with zero mean. The normalized distribu-

simple model system for which we can determine thetion is

given, for —l<sog<o,

by ho(o)=a%(1

h;(o)(i=1,2) numerically and compare the results with Eq.+ U)“_l?_a(lw)/r(a), with I'(«) the gamma function and
(3). The free energy density functional chosen here correl/a a width parameter which measures the distance to the

sponds to a simple van der WadisdW) model[7] for the

monodisperse limithy(o)— 6(o) when a—«~. We then

liquid-vapor transition in polydisperse systems of sphericahave: &,=1, & =0, &=1a, &=2/a? &,=3la*+6/a’,

particles of variable size:

A3
f[p]ZkBTf do'p(a')[ In(%) —l]

+ %J da’J do'V(a,0")p(o)p(c’), (4)

where E[p]=1-fdov(o)p(c) describes the average
excluded volume correction for particles of radiRs and
volume v(a) = (4m/3)R3, while V(o,0')=[drV(r;o,0")

£5=20/a+ 24/a*, etc. For a weakly polydisperse system
we retain only the dominant terms of E) in a 1o ex-
pansion. From Eqg.(3) we obtain then:A;=a ()¢,
+0(Ua?), Ap=ay(®)£x+ap(®) (&~ ) +0(1/a)
={a () +ay(®)}é3+0(1a®), Az=ay()é+0(1a),
etc, wherea, () are the values o&, for a—. Using the
vdW expression(4) to evaluate Eq(1l) one finds, for ex-
ample, fort=1.0 and 7,=0.5, a;(<)=1.75 anday(»)=
—2.68. Using the corresponding numerical solutions found
for hy(o) andh,(o) (see Fig. 1it can be seen from Fig. 2
that A1/§2%175, A2/§3%_093, and A3/§4%175 are

is the integrated attraction between two patrticles of speeies obeyed to within ten percent far larger than, respectively,

and o', for which we took the usual vdW for¥((r;o,o")
=—¢o(R,+R,)%r® for r=R,+R,, and zero otherwise,

40, 80, and 150. We can conclude thus that the weak poly-
dispersity expansion(3) is valid (to dominant order for

€9 being the amplitude of the attraction at the contact ofSchulz distributionshy(o) with a dispersior[(gz—gi)”z]
the two particles. The size polydispersity can be describedmaller than, say, 0.1a(=~100). These values do, of course,

in terms of the dimensionless variable=R,/R—1, with

depend on the thermodynamic state but the case considered
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here t=1,7,=0.5) is representative of othérzyy values. law, A,/A;={1+a,(»)/a(x)}&;/&,. We have verified
Note also that we have verified numerically that the radius othat similar results can be obtained for differén{s) dis-
convergence of Eq.3) with respect to I is fairly sensitive  tributions. Taking, for instance, a Gaussian fg{o), simi-

to the total amount of polydispersity present. Allowing, for lar results are found, althoughy=0 for this case. This in-
instance, the amplitude, of the pair potentiaV(r;o,0’) to  validates the conclusion of Refi4] that a particular
depend orr and o’ does reduce the radius of convergenceimportance should be attached to the skewnedg)@f). In

of Eqg. (3) considerably. From the above it follows that conclusion, the general moment relati@®) can yield useful

A5 /A, follows the universal lawA3/A;=§,/&,, put for-  information about the phase behavior of weakly polydisperse
ward in Ref.[4] whereasA,/A; follows the nonuniversal systems but this information is in general not universal.

[1] W.B. Russel, D.A. Saville, and W.R. Schowaltéolloidal references therein.
Dispersions (Cambridge University Press, Cambridge, En- [4] R.M.L. Evans, D.J. Fairhurst, and W.C.K. Poon, Phys. Rev.
gland, 1998 A.P. Gast and W.B. Russel, Phys. Tod#y(12), Lett. 81, 1326(1999; R.M.L. Evans, Phys. Rev. B9, 3192
24 (1998. (1999; G.H. Fredrickson, Naturé_ondon 395, 323(1998.

[2] W.C.K. Poon and P. Puse@bservation, Prediction and Simu- [5] P. Sollich and M.E. Cates, Phys. Rev. L&i@, 1365 (1998
lation of Phase Transitions in Complex Flujdsdited by M. P.B. Warrenjbid. 80, 1369(1998.
Baus, L.F. Rull, and J.P. RyckaéKluwer Academic Publish- [6] See, e.g., J.P. Hansen and I.R. McDondldgory of Simple
ers, Dordrecht, 1995p. 3. Liquids 2nd ed.(Academic Press, London, 1986

[3] S. Leroch, G. Kahl, and F. Lado, Phys. Rev.58, 6937 [7] J.A. Gualtieri, J.M. Kincaid, and G. Morrison, J. Chem. Phys.
(1999; S.E. Phan, W.B. Russel, J. Zhu, anq _P'M' Chaikin, J. 77,521(1989; A. Daanoun, C.F. Tejero, and M. Baus, Phys.
Chem. Phys.108 9789 (1998; P. Bgr.tlett, ibid. 107, 188 Rev. E50, 2913 (1994: R. Lovett and M. Baus, J. Chem.
(1999; R. McRae and A.D.J. Haymeibid. 88, 1114(1988; Phys.111, 5544(1999, and references therein.

J.L. Barrat and J.P. Hansen, J. Phygance 47, 1547(1986);
J.J. Salacuse and G. Stell, J. Chem. Pliys3714(1982, and [8] D.D. Johnson, Phys. Rev. &, 12 807(1988.



